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A hyperspectral imaging system covering 400 - 1000 nm spectral range was applied for 

vigour detection of waxy maize seeds after artificial aging. After spectral pre-processing, 

the characteristic wavelength was selected by uninformative variable elimination (UVE), 

competitive adaptive reweighted sampling (CARS), and random frog (RF) methods. The 

moisture, starch, protein, and fat contents were measured for each grade of seed, and these 

values were correlated with the spectrum. Finally, the vitality detection model was 

established by least squares support vector machine (LS-SVM), extreme learning machine 

(ELM), and random forest (RF). The prediction sets exhibited high classification accuracy 

(> 99%) for 115 features. The model constructed from the bands significantly correlated 

with chemical composition (CC), and was better than the classic feature selection methods. 

The overall results indicated that hyperspectral imaging could be a potential technique to 

assess seed vigour. 
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Introduction 

 

Waxy corn (Zea mays L. sinensis Kulesh) 

originated in China as a mutation of hard corn. This 

crop has high economic, nutritional, and processing 

values, and has become very popular in the corn 

industry. Waxy corn kernels have higher nutrient 

content than that in common corn, with 70 - 75% 

starch, more than 10% protein, and 4 - 5% fat. During 

storage, seeds undergo physiological and 

physiochemical changes including deterioration of 

seed chemistry (Kapoor et al., 2011; Eisvand et al., 

2016). This natural aging is a long-term process, and 

aging study requires extensive sampling. As an 

alternative, artificially accelerated aging can be 

performed in the laboratory to simulate seed aging to 

facilitate and expedite the study (Men et al., 2017).  

Like in traditional corn, the seed vigour of 

waxy corn is directly related to its seed germination 

performance and emergence. Conventional methods 

used to estimate seed viability include germination, 

tetrazolium (TZ), and electric conductivity tests 

(Kandpal et al., 2016). However, these traditional 

methods are time-consuming, laborious, and seed-

damaging. Fourier near infrared (Altameme et al., 

2015; Qiu et al., 2019), near-infrared (Rodríguez-

Pulido et al., 2014; Jia et al., 2015), and Raman 

spectroscopy methods (Lee et al., 2017) are newer 

methods that can be applied to the study of seeds. 

However, these approaches typically do not obtain 

sufficient information by using point-based scanning 

techniques. 

Hyperspectral imaging technology is a new 

non-destructive testing method that combines 

imaging and spectral data (Xia et al., 2019). In recent 

years, this approach for seed quality evaluation has 

received extensive attention and application in 

various fields, especially agricultural and forestry. 

This technique has been applied to seed type 

differentiation (Wang et al., 2016; Zhao et al., 2018), 

internal main component detection (Yang et al., 

2018), origin (Gao et al., 2013), storage time 

assessment (Guo et al., 2017), seed infection 

detection (Kimuli et al., 2018; Polder et al., 2019), 

and seed vigour prediction (Ambrose et al., 2016; 

Wakholi et al., 2018). Zhang et al. (2018) compared 

partial least squares discriminant analysis (PLS-DA) 

and support vector machines (SVM) models, finding 

that the PLS-DA model had high classification 

accuracy for whole wheat seeds (> 85.2%) and viable 
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seeds (> 89.5%) by using only 16 wavebands. Snider 

et al. (2016) studied the effects of cotton seed 

chemical composition on seedling vigour, concluding 

that seed quality and also oil and protein content 

positively correlated with seedling vigour. Cai et al. 

(2013) found a positive correlation of soluble protein 

with seed vigour. These applications of hyperspectral 

imaging technology successfully predicted 

components and vitality of different seeds, but further 

work is required to correlate spectral values and main 

components for vitality assessment. 

For the identification of waxy corn seed vigour 

using hyperspectral imaging, the goal of the present 

work was to perform component-related feature band 

selection to improve the model discriminative ability. 

The specific steps of this approach were: (1) to obtain 

the hyperspectral information of different varieties of 

glutinous maize seeds subjected to different lengths 

of aging duration, and then measure seed vigour by 

standard germination experiments; (2) to analyse the 

correlation of main chemical components and spectra 

in seeds; (3) to perform spectral pre-processing and 

select characteristic bands to establish a classification 

model; and (4) to assess the ability to predict the level 

of vigour of different varieties of waxy corn seeds. 

 

Materials and methods 

 

Sample preparation 

Two breeds of waxy corn seeds, Jingkenuo 

2000 and Zhongpintiannuo F1, were purchased from 

the Beijing Seed Company, Beijing, China. For each 

breed of waxy corn, 1,400 g (about 4,000 grains) were 

divided into four groups, and subjected to different 

aging durations. The control group was not aged, but 

kept at room temperature. The other three groups 

were placed in an artificial aging tank at 45°C (Qiu et 

al., 2019) and relative humidity of 98% for 3, 6, or 9 

d. The four grades for both Jingkenuo 2000 and 

Zhongpintiannuo F1 breeds resulted in eight 

categories, designated as A, B, C, D, E, F, G, and H. 

The 288 samples in each group were used for data 

analysis, for a total of 2,304 samples. 

 

Measurements of seed chemical components 

To provide sufficient sample size for the 

experiment, 300 g seeds were arbitrarily chosen from 

each category, and the water, protein, starch, and fat 

contents were measured. To this end, 75 g samples 

were divided into three groups for three separate 

measurements, and then, these three measurements 

were averaged. The above components were 

measured in accordance with the National Food 

Safety Standard of the People's Republic of China 

using direct drying, acid hydrolysis, Kjeldahl, and 

Soxhlet extraction methods (Chinese Standard, 

2016a; 2016b; 2016c; 2016d). All test results are 

presented in Table 1. 

 

Table 1. Major components (g/100 g) of eight groups of waxy corn seeds. 

Component A B C D E F G H 

Moisture 9.06 8.29 7.93 7.81 9.7 8.68 8.1 7.77 

Starch 44.3 26.3 45.6 29.2 65.6 36 34.7 43.3 

Protein 10.8 9.7 9.5 9 11.1 10.3 10.6 10 

Fat 4.1 3.7 4.5 3.6 4.2 4.3 4.6 4.5 

 

Hyperspectral image acquisition and correction 

The hyperspectral image system included an 

SOC710 imaging spectrometer with a built-in C-type 

infrared correction lens (Surface Optics Corporation, 

USA), two 250 W halogen lamps (OSRAM GCA, 

Guangdong, China), tilted to 45° and placed 

symmetrically, a transport platform, and a computer 

terminal. This instrument has a spectral range of 400 

- 1000 nm, a spectral resolution of 4.6875 nm (115 

bands in total), and collects an image of 520 × 696 

pixels. 

For imaging, 288 samples were randomly 

selected from the remaining 200 g samples of each 

treatment class, and hyperspectral data were 

collected. The waxy corn seeds were set in a Petri dish 

(9 cm Ø), with 22 cm distance between the container 

and imaging spectrometer. After collecting 

hyperspectral images, the original images (IR) were 

calibrated to remove noise. The black reference (IB) 

was acquired when the camera lens was covered, and 

the white reference (IW) was collected using a white 

Teflon board with approximately 100% reflectance. 

The corrected image (I) was calculated using Eq. 1: 

 

  𝐼 =
𝐼𝑅−𝐼𝐵

𝐼𝑊−𝐼𝐵
                                   (Eq. 1) 
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Standard germination test 

Waxy corn seeds with hyperspectral 

information were subjected to standard germination 

test. Samples were placed in a separate Petri dishes 

with filter paper that was soaked with water to retain 

moisture. Following 7-d incubation at 25°C with 99% 

relative humidity and continuous light in the 

incubator, the germination was measured. According 

to the International Seed Testing Association 

standard (ISTA, 2015), if the germ of the seed is 

larger than 1 cm, it is considered a viable seed. The 

germination rates of the eight categories were 83.3, 

95.8, 91.7, 54.2, 89.6, 93.8, 75.0, and 47.9% 

(corresponding to groups named A, B, C, D, E, F, G, 

and H), respectively. Short-term high temperature 

treatment can promote the improvement of seed 

vigour, consistent with Yan et al. (2014) study of oak 

(Quercus liaotungensis) seeds. The germination rate 

and average root length both initially increased and 

then decreased with the increase of aging duration. 

 

Spectral extraction and pre-processing 

The selection of an appropriate region of 

interest (ROI) is critical because it affects the 

extraction of the spectral data. Adaptive threshold 

segmentation is widely used due to its simplicity and 

efficiency, and was used for ROI selection in the 

present work (Karasulu and Korukoglu, 2010). 

Spectral extraction was done in four steps. The 

reflected image at 743.79 nm was chosen as this 

yielded the highest contrast between the seed and 

background (step I). Next, the binary image was 

established based on the grayscale image, and then, 

filtering was performed to enhance the binary image 

and eliminate noise (step II). The complete single area 

of each seed was set as the ROI (step III). Finally, the 

average spectrum of seeds was calculated from the 

average of the intensity values of all pixels in the ROI 

for each seed in 115 bands (step IV). 

Multiplicative scatter correction (MSC) can 

effectively eliminate the effect of scattering, and 

enhance the spectral absorption information related to 

different components. Savitzky-Golay (SG) first 

derivative pre-processing is used to separate small 

absorption peaks, and improve spectral resolution. In 

the present work, MSC and SG first derivative 

methods were combined to remove the noise from the 

spectrum data and improve the prediction ability. 

 

Optimal wavelength selection 

Hyperspectral data are typically large, but 

contain a lot of redundant information, thus requiring 

extensive computing time and storage space for data 

processing. Uninformative variable elimination 

(UVE) (Cai et al., 2008), a commonly used method 

for variable selection, aims to select the best 

combination of important variables while removing 

useless information to improve verification 

performance. This method uses the partial least 

squares (PLS) regression coefficient as an indicator 

of wavelength importance.  

Competitive adaptive reweighted sampling 

(CARS) (Li et al., 2009) is a variable selection 

method based on the principle of ‘survival of the 

fittest’ in Darwinian evolution theory. This method 

combines the exponentially decreasing function 

(EDF) and adaptive reweighted sampling technique 

(ARS) to select the variable point with the larger 

absolute value of the regression coefficient in the PLS 

model, and remove the variable point with the smaller 

weight value (Wang et al., 2017). Cross-validation 

can then be used to select the smallest root mean 

square error calculated from the cross-validation 

(RMSECV) subset in the PLS subset model. The 

variables contained in this subset are the optimal 

combination of variables. 

Random frog (RF) (Bao et al., 2019) calculates 

the probability of being selected for each variable by 

simulating a Markov chain based on a steady state 

distribution. Whether the variable is selected or 

eliminated during each iteration is based on the size 

of the absolute value of each variable on the 

regression coefficient curve in the returned results. 

 

Recognition model development 

The least squares support vector machine (LS-

SVM) starts from the loss function of machine 

learning, and uses the second norm in the objective 

function of the optimisation problem. Additionally, 

the inequality constraints in standard support vector 

machine (SVM) algorithms are replaced by equality 

constraints. In this way, the LS-SVM method changes 

the optimisation problem to a set of linear equations, 

which increases calculation efficiency over that of 

SVM, and improves the accuracy and precision of 

processing non-linear signals (Su et al., 2015). Radial 

basis function (RBF) was chosen as the kernel 

function of LS-SVM. 

Extreme learning machine (ELM) is a type of 

machine learning system or method based on a 

feedforward neural network. In this kind of system, 
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the weights of hidden layer nodes are given randomly 

or artificially, no updating is needed, and the learning 

process only calculates output weights (Huang et al., 

2006). For single hidden layer neural networks, ELM 

can randomly initialise input weights and biases to get 

the corresponding output weights. The connection 

weights between the hidden layer and the output layer 

do not need to be adjusted iteratively, but instead are 

determined a single time by solving the system of 

equations. ELM is widely used in computer vision, 

bioinformatics, and in regression problems in some 

earth and environmental sciences (Huang et al., 

2015). 

By integrating multiple trees through ensemble 

learning, a random forest (RF) is formed with a 

decision tree as the basic unit. The construction 

method of each decision tree is as follows: (1) N 

represents the number of samples, and M represents 

the number of features; (2) the input m (m is far less 

than M) is used to determine the result of the previous 

node of the decision tree; (3) for a sample with 

replacement in N samples, repeating N times is 

performed to form a training set, and prediction with 

unsampled ones; and (4) for each node, m features are 

randomly selected to calculate the best splitting 

method. In this way, a complete tree is constructed. 

RF can effectively run-on large data sets, process 

input samples with high-dimensional features, and 

obtain good results for the default value problem 

(Breiman, 2001). 

 

Results and discussion 

 

Spectral features  

Figure 1 shows the similarity of the average 

spectra and the difference in reflectance for all tested 

grades of seeds. All spectra were pre-processed by 

MSC and SG first derivative methods. This treatment 

removed scattering effects, and made it easier to 

distinguish multiple peaks and valleys. Crests and 

troughs of the short-wave near-infrared region are 

often caused by stretching and frequency doubling of 

the bending vibration of the X-H (N-H, C-H, O-H) 

bonds of proteins (Schrieve et al., 1991). It can be 

seen from the figure that after the same aging 

treatment, the average spectra of the seeds of 

Jingkenuo 2000 and Zhongpintiannuo F1 had obvious 

aggregation. Among them, the control group was 

particularly obvious, which was well distinguished 

from other grades. The vitality curves for all samples 

after pre-processing exhibited similar trends over the 

entire band, with some overlap in spectra. Therefore, 

chemometric methods were necessary for further 

classification and identification. 

 

 
 

Figure 1. Average spectra of eight groups of waxy 

corn seeds. 

 

Reference analysis of chemical composition 

The main components of seeds will be affected 

by genetic factors, as well as by external 

environmental factors such as climate and soil 

conditions, harvest time, maturity, processing, 

packaging, transportation, and storage. The main 

components of seeds subjected to different storage 

conditions may be the same, but there may be 

variation in content, thus resulting in changes in the 

spectrum. The hyperspectral study of seed vigour 

requires good correlations between the spectrum and 

the main components of seeds. 

The water, starch, protein, and fat contents 

varied in different types of waxy corn with different 

aging durations. Table 2 shows the contents of each 

major storage substance per 100 g of sample. With 

increased aging duration, the moisture content of 

seeds in the same category showed a decreasing trend. 

The amount of the primary substance in corn seeds, 

starch, also decreased suddenly with aging. Only 

small changes in protein and fat contents were 

observed, with the same decreasing trend. This may 

reflect changes in different enzyme activities during 

aging (Zhu et al., 2018; Wang and Ju, 2019). 

Enzymes and other substances could together 

increase the total amounts of starch, protein, and 

lipids in seeds. 

A primary goal of the present work was to 

correlate the amounts of different components and the 

spectral data (average spectrum) of the eight groups 
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of seeds. The Pearson correlation coefficient method 

was used, and the correlation coefficient (R) and the 

test p value were determined. R was used to assess the 

correlation between the spectrum and the 

composition of a component, and the p value was 

used to assess significance. Characteristic bands of R 

> 0.8 and p < 0.05 were selected for the four 

components of each category of the two categories of 

seeds, as shown in Table 2. The repeated parts of 

these bands were removed for subsequent modelling, 

as is done in conventional feature selection methods. 

Therefore, a total of 44 bands were extracted as 

feature bands. 

 

Table 2. Extraction of bands significantly related to the main storage components. 
 

Variety Component 
Number of 

bands 
Wavelength (nm) 

Jingkenuo 2000 

Moisture 3 632.8, 727.8, 786.5 

Starch 7 
765.1, 770.5, 775.8, 797.2, 802.6, 

845.6, 965.2 

Protein 4 400.6, 727.8, 786.5 

Fat 8 
482.3, 518.3, 717.2, 722.5, 754.5, 

759.8, 840.2, 851.0 

Zhongpintiannuo F1 

Moisture 10 
400.6, 441.3, 446.4, 461.8, 528.7, 

781.2, 905.2, 970.7, 976.2 

Starch 8 
523.5, 669.6, 674.9, 680.2, 749.1, 

872.6, 878.1, 954.3 

Protein 2 533.8, 910.6 

Fat 13 

431.1, 446.4, 451.5, 461.8, 690.7, 

754.5, 781.2, 802.6, 851.0, 867.2, 

926.9, 932.4, 937.9 

 

Feature band extraction by different methods 

A total of 115 features were included in the 

modelling based on the raw data, but there may be 

some redundant information in these features. To 

select valid information and improve operation speed, 

UVE, CARS, and RF methods were used to extract 

the characteristic bands from the original bands. 

When using the UVE method for selection, the 

optimal number of major factors was set to eight. The 

best results were obtained when the upper and lower 

thresholds were +68 and -68, respectively, and the 

minimum RMSECV reached the minimum value of 

0.1770. This gave 43 characteristic bands. The CARS 

algorithm reduced the number of variables from 115 

to 50. Five cross-validations were performed with 

300 Monte Carlo samples. When RF was applied, the 

maximum number of latent variables for cross-

validation when using the automatic scaling method 

was eight, and 32 characteristic bands were finally 

selected. 

The bands significantly correlated with the 

chemical composition (CC) based on these three 

methods were compared. Figure 2 shows the number 

of characteristic bands selected by each method, and 

the specific location of each band.  

 

 
 

Figure 2. Comparison of feature bands selected by 

different feature selection methods. 

 

The bands selected by CARS had obvious two-

end differentiation, with more features in the 400 - 

600 and 800 - 1000 nm ranges, but sparse signal in 
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the 600 - 800 nm range. UVE and RF patterns were 

relatively uniformly distributed over the entire band. 

In the 500 - 700 nm range, CC had an interval close 

to 100 nm, and its characteristic band was more 

concentrated in the near-infrared spectral range. 

 

Discriminant model based on different feature sets 

To compare the different classification 

methods to detect and classify the corn seed spectral 

data and increase reliability, LS-SVM, ELM, and RF 

methods were employed to establish discriminant 

models for different grade of waxy corn seeds. For 

modelling, 288 seeds in each of eight groups were 

divided into three equal portions, and then randomly 

build a single calibration set and prediction set at a 

ratio of 2:1. Combining them, the sample sizes of the 

prediction set and calibration set were 768 and 1,536, 

respectively, during each modelling. This was done 

three times, and the average was considered the final 

classification result. 

Table 3 summarises the results of discriminant 

models under different models and different feature 

sets. With 115 features in the full band, both the LS-

SVM and RF calibration sets could achieve 100% 

accuracy, with higher prediction set accuracy for the 

LS-SVM model (about two percentage points). All 

three modelling methods gave similar results with 

fewer features, though was done as good as the full-

band result. When compared with the results of the 

full-band prediction set, the feature model results 

were 0.69 - 7.59% less accurate. This result differs 

from that of Kandpal et al. (2016) who used PLS-DA 

to establish a melon seed vigour model, and found 

that the model with characteristic band selection by 

VIP and SR was similar to or better than the full band 

model. 

 

Table 3. Recognition results of different discriminant models based on different sets of bands. 
 

Discriminant 

model 

Number of characteristic band (%) 

115 (Full1) 43 (UVE) 50 (CARS) 32 (RF) 44 (CC2) 

LS-SVM 
Cal.3 100 100 100 100 100 

Pre.4 99.22 96.88 97.74 98.18 98.53 

ELM 
Cal. 91.71 89.94 90.8 84.81 89.91 

Pre. 86.93 86.11 86.46 79.34 86.72 

RF 
Cal. 100 100 100 100 100 

Pre. 97.31 93.31 94.36 90.8 96.61 
1full band characteristics, 2bands correlated with the main chemical composition, 3calibration set, and 
4prediction set. 

 

UVE, CARS, and RF are classic and reliable 

feature selection methods. In the SVM model of 

wheat variety classification, RF feature selection 

allowed the use of 50 bands for results that were 

similar to those obtained using 256 bands (Bao et al., 

2019). These methods all performed well in the 

present work. For the LS-SVM model, the accuracy 

of the training set was 100%, and the accuracy of the 

prediction set remained stable at greater than 96%. 

Modelling with ELM and RF was less successful, 

with poor performance based on RF characteristic 

bands. This may be due to the small number of bands, 

and the relatively discrete distribution. CC may be the 

optimal feature selection method, with recognition 

capabilities superior to the other three feature 

selection methods. The first three classic methods 

only used spectral data to select the most 

representative band. The CC method required only 44 

bands to achieve close to the full-band effect. These 

44 bands were significantly related to the main 

storage substances in waxy corn seeds, and could 

fully reflect the role of chemical components on the 

spectrum. The results obtained in the present work 

will facilitate the development and use of spectral 

methods to study seed composition and vigour. 

 

Conclusion 

 

Hyperspectral imaging technology allowed for 

the successful determination of the vigour of waxy 

maize seeds subjected to different aging times. 

Correlation analysis was performed between the 

spectral data and the levels of water, protein, starch, 

and fat; and 44 bands with significant correlation 

were identified. UVE, CARS and RF were also used 

for feature selection. Among the discriminant models 
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established by LS-SVM, ELM, and RF, the LS-SVM 

was the best, with good stability under different 

characteristic bands. In these models, the accuracy 

recognition rate of eight grades of seeds was over 

96%. For feature selection, the CC selected band was 

more conducive for model establishment. The 

spectrum exhibited a strong correlation with the main 

chemical substances in seeds. The results of the 

present work showed that hyperspectral technology 

could effectively detect seed vigour for waxy corn 

seeds of different species and vigour. In future 

studies, waxy maize seeds of different varieties and 

vigour levels should be tested. More substances 

related to seed vigour should be measured, and the 

correlation analysis of substances related to vigour 

should be carried out to establish the basis for use of 

hyperspectral imaging technology to detect seed 

vigour. 
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